
-Ai82 966 INTEGRATED INFORMATION SUPPORT SYSTEM (CuSS) VOLUME 7 1/1
COMMUNICATIONS SUBS (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU D PAYNE

UNCLASSIFIED Bi NOV 85 DS-628143298 F/G 12/6 NL

EEEEEEmhohEohE

E[MEEnEEEson

k'128 1225
LU
&611 .LL

I u I jjIM

-~ ~ ~ ~ ~ ~ ~ ~~~~L 6.~-- w w -'~-w u~ .-

AD-A182 066 1jiL cc

AFWAL-TR-86-4006
Volume VII
Part 4

ELECTE
JL 0 7 987

D

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume VII - Communications Subsystem
Part 4 - IBM IHC and IPC Development Specification

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution Is unlimited.

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OH 45433-6533

-. * -

NOTICE

When Government drawings speciications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated. furnished. or in any way supplied the said drawings
specifications, or other data. is not to be regarded by implication or otherwise as in any
manner licensing the holder or any Other person or corporation, or conveying any rights or
permission to manufacture, use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repoy has been reviewed and is approved for publication.

$
DA D L. U ON' PROJECT MANAGER DA TE

'S W IGHT PA ERSON AFB OH 45433

FOR THE COMMANDER:

AL~D C. SHUMAKER. BRANCH CHIEF DATE
AFWAL/ML TC
WRIGHT PATTERSON AFB OH 45433

Olf your address has changed, if you wish to be removed from our mailing list, or it the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W-PAFB, OH
45433 to help us maintain a current mailing list.'

Copies of this report should not be returned unless return is required by securifty
contractual obligations, or notice on a specific document

'1

Vaeliassifled 1

SleWA"T CLASS 01iS*'S. Of Two$ *&as/ / oK ~ S

REPORT DOCUMENTATION PAGE

U. 91CWA'?V M.,A0411CATiolo AuW704CaY 3 O15?QSST1Q%.Ai.A*SiAITY Of ASPORY

2~ ec~ge~caswooweoma'wc **~Approved f or public release;
distribution is unlimit1.0.

41 P1,m1PORM1010 OftoAkZA?,O0. IMPORT IW101199RIS a. WOW.TORiSIG @moh ,a.AT60k AIsPOm, 11UMS11Rg

AFWAL-T-86-40006 Vol V11.* Part 4

6& 94Au o 119 Plmfoahollc CSA~iIZsICOW" W OPU*CA SYMBOL If. NAug Of AOftIV@AIioo OftGANAY.s

General 3tleetric Company I.FVAL/11L.TC
Production Resources Consulting

SL ̂ eoR5 Ica.t. Sao ow sip cow) ft. Aeemgu fCiit. 800 o- ziPi Cdde

soneectady. NY 12345 VPArn. ON 45433-6533

So RAMS2 00 11wOih.0illi5ofsoime O*99 S VWROL a PROCumEM1116wY1 US4706414 IDIINYOCAT40dft#uMi A

mattrlals L-horatory
Air Force Systems CourAaa. USAF AYVALfXLC T536l5-41O-C-11155

I am emA5*mIS4,,.8..eooiPc.oto 10 SOVACA o 0.19001011116 0W06

Wrigbt-Pau161 810en.3 Ohio 45453aLm5N 4. IO.N.AD

T1101T 750 6201

(See Reverse) -

12. Pgas50f& £UWT14045
Payne. Diane

13. ?VPG Of WRTU 1131 ?log COvEUBO 11a OATS Of a Pool (yr.. me.. sh~ Is. PaDI COU617
Fisal ?.chaiosi eport 82 Sept 2580 - 53 Jujy 3885 193 oexo 57

64.01"6111112 &AT vwo?&Tl@ The computer software contained herein are theoretical and/or

ZCAN Project Priority 6201 references that in no way reflect 'Air Forcei-mwed or -develo.% -'i

gOSATY Coot$ i S UACI ?SI an mb refeo0 mow A, omneft ama waaf* "~ N4e& aomfor

is AGSTBACT (CnNe Am deo oinWanidi Uft ft,1r 540W mrs

L This development specification describes the basic
architecture of the IBM interface, Including the Inter-host
communications primitives and the Inter-process
communications primitives.1~ ~

IDIST OSWT #ft,&'4AI.AS' I.t W OP ASTA&CVI 81 &tRAL-T CURSv C&Ad&I.CA,.@'

vftc6*M.PiSS~uLSMIt*l *'Lug AS **T C. p'c was as Unclassifiled

David L. ifuisemfod*AeCo

FO ORM 1473.8S3 APR ___________oI___________'re

cum'v C M'C Oiel ti PA1

%

1.Title

Integrated Information Support System (1188)
Vol VII - Communications Subsystem
Part 4 - IBM IHC and IPC Development Specifioation

A S D 86 0018
9 Jan 1986

Accesion For

NTIS CRA&M
DTiC TAB
U;.,ur.rounced

Ju..tf-cation
. -

DiA ibttiori I

Av:,01ab'ity Codes

iW 11 v-d/Or

A-1

&42

DS 620143300

1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAN Project 6201).
This contract is sponsored by the Materials Laboratory, Air
Force Systems Command, Wright-Patterson Air Force Base. Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search

General Dynamics/ Responsible _r factory view
Ft. Worth function and information

models

iii

0 . . , % - . - . - . - -, -,. -

DS 620143300
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business

North American Rockwell Reviewer

Northrop Corporation Responsible for factory view
function and information
models

Pritsker and Associates Responsible for IDEF2 support

SofTech Responsible for IDEFO support

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BMAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan. as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

DS 620143300
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programing the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISHC)

v

DS 620143300
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP)

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements
Company (HAG)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI)

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

DS 620143300

1 November 1985

TABLE OF CONTENTS

Page

SECTION 1.0 BASIC ARCHITECTURE...................... 1-1

SECTION 2.0 MODULE LINKED TO COMM. 11TH AND APS 2-1
2.1 OSIIBM................................ 2-1

SECTION 3.0 INTER-PROCESS PRIMITIVES (IPC)..........3-1
3.1 Create Mailbox......... 3-1
3.2 Send Message.......................... 3-3
3.3 Receive Message....................... 3-4
3.4 Get Message........................... 3-6
3.5 Delete Mailbox........................ 3-8
3.6 Release Event Block....................3-9
3.7 Set Timer............................. 3-9
3.8 Cancel Timer.......................... 3-10
3.9 Wait for an Event......................3-11
3.10 Log an Error Message...................3-14
3.11 Terminate Processing...................3-14

SECTION 4.0 PROCESS CONTROL PRIMITIVES CPRC)........4-1
4.1 Create Process........................ 4-1
4.2 Delete Process........................ 4-3
4.3 Get Process Name.......................4-4

SECTION 5.0 PRC SUPPORT ROUTINES.....................5-1
5.1 ATTACH Stub........................... 5-1
5.2 End-of-Task Exit...................... 5-1

SECTION 6.0 ENVIRONMENT CONTROL MODULES.............6-1
6.1 MVS Initialization....................6-1
6.2 Common Table.......................... 6-2

SECTION 7.0 INTER-HOST PRIMITIVES (IHC).............7-1
7.1 Initialize Communication

with the VAX or Honeywell Level 6 .. 7-1
7.2 Transmit a Message

to the VAX or Honeywell Level 6 ... 7-2
7.3 Receive a Message

from the VAX or Honeywell Level 6 7-3
7.4 Get a Message

from the VAX or Honeywell Level 6 7-5
7.5 Cancel a Receive

from the VAX or Honeywell Level 6 7-6

vii

DS 620143300
1 November 1985

TABLE OF CONTENTS (Continued)

Pasge

7.6 Terminate Communication
with the VAX or Honeywell Level 6 .. 7-7

SECTION 8.0 INTERFACE TO CICS APPLICATION...........8-i
8.1 Pseudo-AP............................. 8-1

SECTION 9.0 CICS INTERFACE PRIMITIVES...............9-1
9.1 Initialize Communication with CICS .. 9-1
9.2 Send Message to CICS..................9-3
9.3 Receive Message from CICS.............9-4
9.4 Get a Message from CICS...............9-5
9.5 Cancel Receive from CICS..............9-7
9.6 Terminate Communication with CICS .. 9-7

SECTION 10.0 3270 EMULATOR........................... 10-1

APPENDIX A MAILBOX LOGIC........................... A-1

APPENDIX B MODULE STRUCTURE CHART..................B-i

APPENDIX C VTAM LOGIC FOR IHC.......................C-1

viii

&"Ok

DS 620143300

1 November 1985

INTRODUCTION

This manual does not follow the normal format of a
Development Specification because the information hereininvolves interfaces with commercially available communications

and operating systems.

Ii

4 '' "J . "" '" ..t.

DS 620143300
1 November 1985

SECTION 1

BASIC ARCHITECTURE OF THE IBM INTERFACE

The IBM Interface consists of the following programs:

1. The OSIIBM stub, which must be link-edited with all
programs in the system, including the COMM. NTM. QP,
and AP programs. It contains entry points for all the
primitive routines and invokes the proper interface
program to perform the requested function. It also
contains the primitive routine ENDRUN.

2. The OSIIPC program which contains:

" CRTMBX, for creating a mailbox

* DELMBX, for deleting a mailbox

" SNDMSG, for sending a message to a mailbox

* RCVMSG and GETMSG, for receiving a message from a
mailbox

* SETTIM, for setting a timer

* CNLTIM, for cancelling a timer, and

- WAITOI thru WAIT22, for waiting for completion of
one event out of a list of events

3. The OSIPRC program which contains:

* CRTPRC, for creating a process (subtask)

* DELPRC. for deleting a process

0 GETNAM, for providing a process with its own
process name

4. The OSIIHC program (and its error exit IHCEXT) which
contains:

* INILAN, for initiating communication with the VAX
or Level 6

~1-1

a

DS 620143300
1 November 1985

0 TRMLAN, for terminating communication with the
with the VAX or Level 6

* XMTLAN, for sending a message to the VAX or Level
6

* RCVLAN and GETLAN. for receiving a message from
the VAX or Level 6

e CNLLAN, for cancelling a receive from the VAX or
Level 6

5. The VTAM control block modules, which are assembled
from macro calls, and which contain the VTAN control
blocks and other data required to communicate with the
VAX or Level 6. Two of these modules must be created
-- one for the VAX and one for the Level 6. The load
module names are the same as the port names.

6. The error logging programs:

" OSIERR, which contains ERRPRO, which formats and
time-stamps error messages and sends them to the
error log mailbox

" ERRLOG*, which writes error messages to the error
log (* this program will be implemented by GE)

7. The PRC support routines:

" OSIATCH, the ATTACH stub, which is the first
program to get control when a subtask is created;
it obtains the work areas required by the IBM
Interface programs

" OSIETXR, the End-of-Task exit, which searches for
and removes any remaining table entries for a
subtask when it ends

8. The environment control modules and tables:

" OSIMVSI. which is the first program executed in
the address space, and which initializes the
environment

* OSICOMTB, the COMMON TABLE, which contains other
tables with information required by all the

1-2

DS 620143300
1 November 1985

primitives, as well as data required to initialize
the address space. The COMMON TABLE is assembled
from macro calls.

All the IBM interface modules are coded in Assembler, and
all are re-entrant. The COMMON TABLE and the VTAM control block
modules must also be link-edited as re-entrant, even though they
are in fact modified during execution.

NOTE: The following modules are part of the IBM Interface, but
they are not being implemented by On-Line Software. For
this reason, they are not described in this document.

9. The Console Primitive program which handles:

" Initiating and terminating communication with a
terminal

* Sending and receiving messages to/from a terminal

As a temporary measure, an interface program is being

provided which accepts the console primitive calls and
invokes the IHC program to communicate with a
terminal.

10. The modules required to run a transaction in a CICS

region

* The Psuedo-AP

* The CICS Interface program

* The 3270 Emulator program

* The VTAM SLU control block table with entries for
as many terminals as are concurrently being

Vemulated

1-3

DS 620143300
1 November 1985

SECTION 2

MODULE LINKED TO CONN. NTH AND APS

2.1 OSIIBM

Entry from the IISS TEST BED programs into the IBM
interface is accomplished through COBOL calls which are resolved
in a stub module (OSIIBM) which must be link-edited to each
CONN, NTM and AP program. This module has multiple entry
points, one for each primitive which a program can call.

The entry points are:

CRTMBX SETTIM ERRPRO CRTPRC COMM only:
SNDMSG CNLTIM ENDRUN DELPRC INILAN
RCVMSG WAIT01 GETNAM XMTLAN
GETMSG thru RCVLAN
DELMBX WAIT22 GETLAN
RELEVB CNLLAN

TRMLAN

FUNCTIONS PERFORMED:

A. RECEIVE CONTROL AT AN ENTRY POINT

1. Save the COBOL program's registers

2. Record the type of call

B. SET UP TO PASS CONTROL

1. Locate the Task Work Area (TWA) by searching back
through the save area chain

2. Save in the TWA:
type of call
address of the parameter list (from the COBOL
program)

C. LINK TO THE PRIMITIVES

1. If an IPC, PRC, or IHC call,
LINK to appropriate interface program

2-1
i

DS 620143300
1 November 1985

2. If an ERRPRO call.
set up ERRPRO parameter list in the TWA LINK
to OSIERR

3. When control is returned,
restore the COBOL program's registers
RETURN to caller

D. TERMINATE THE COBOL PROGRAM

1. If an ENDRUN call,
restore the ATTACH stub's registers (from the
TWA)
RETURN to ATTACH stub

(process is ended)

2-2

DS 620143300
1 November 1985

SECTION 3

INTER-PROCESS PRIMITIVES (IPC)

3.1 Create Mailbox

The CRTMBX primitive routine is in program OSIIPC.

CALL 'CRTMBX° USING INPUT-MAILBOX-NAME
MAILBOX-SIZE
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If mailbox-name has embedded blanks
set 'invalid mailbox name' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If mailbox-size is zero
set 'mailbox size zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN 'to caller

3. If mailbox-size is not numeric or is greater than
the max

set 'ma:.lbox size greater than maximum'
STATJS-CODE

LINK to ERRPRO to log error
RETURN to caller

4. If EVENT-BLOCK is not all zeros
set 'event block not initialized' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. CHECK IF MAILBOX ALREADY EXISTS

1. Serialize use of mailbox and MAILBOX TABLE

2. Load address of COMMON TABLE from TWA

3. Search for mailbox-name in MAILBOX TABLE

3--1

DS 620143300
1 November 1985

search til high-water-mark
some slots may be empty
follow chain-address if any
if found empty slot

save address of first empty slot

4. If found mailbox-name
set 'mailbox already exists' STATUS-CODE
LINK to ERRPRO to log error
release use of mailbox

and MAILBOX TABLE
RETURN to caller

C. ESTABLISH MAILBOX

1. Allocate MAILBOX TABLE entry
if no empty slot found
GETMAIN storage for continuation of MAILBOX

TABLE
chain and format storage obtained
LINK to ERRPRO to record overflow

2. Create mailbox and MAILBOX TABLE entry
GETMAIN storage of mailbox-size
format mailbox header
put mailbox-name, A(storage), A(ECB) in MAILBOX

TABLE entry
save address of MAILBOX TABLE entry in EVENT-BLOCK

D. PRIME EVENT-BLOCK AND OTHER REQUIRED AREAS

1. Move the mailbox-name to the EVENT-BLOCK
(marks it as the EVENT-BLOCK for this task's input
mailbox)

2. Set EVENT-TYPE to 01 (RECEIVE)

E. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. Release use of mailbox and MAILBOX TABLE

3. RETURN to caller

3-2

DS 620143300
1 November 1985

3.2 Send Message

The SNDMSG primitive routine is in program OSIIPC.

CALL 'SNDMSG' USING TARGET-MAILBOX-NAME
BUFFER
NUMBER-OF-BYTES
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If mailbox-name has embedded blanks
set 'invalid mailbox name' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If number-of-bytes is zero
set 'number of bytes zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

3. If number-of-bytes is not numeric or is greater
than the max

set 'number of bytes greater than maximum'
STATUS -CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK

1. If EVENT-BLOCK is not all zeros
set 'event block not initialized' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. CHECK IF TARGET MAILBOX EXISTS

1. Serialize use of mailbox

2. Load address of COMMON TABLE from TWA (contains
MAILBOX TABLE)

3. Search for mailbox-name in MAILBOX TABLE
search til high-water-mark

3-3

DS 620143300
1 November 1985

follov chain-address if any
may be empty slots

4. If not found mailbox-name
set 'mailbox not found' STATUS-CODE
LINK to ERRPRO to log error
release use of mailbox
RETURN to caller

5. Mailbox found
save MAILBOX TABLE entry address in EVENT-BLOCK

(to save future search)

D. PUT MESSAGE IN TARGET MAILBOX

1. Pick up address of storage for mailbox

2. If message doesn't fit in mailbox
set 'mailbox full' STATUS-CODE
LINK to ERRPRO to log error
release use of mailbox
RETURN to caller

3. Put message in mailbox

4. Adjust current byte-count and displacements

5. POST the ECB in the target mailbox EVENT-BLOCK
(ECB address is in MAILBOX TABLE entry)

E. RETURN CONTROL TO CALLER

1. Set "successful completion' STATUS-CODE

2. Release use of mailbox

3. RETURN to caller

3.3 Receive Message

The RCVMSG primitive routine is in program OSIIPC.

CALL 'RCVMSG' USING INPUT-MAILBOX-NAME
EVENT-NUMBER
EVENT-BLOCK-nn
STATUS.

3-4

..........................

DS 620143300
1 November 1985

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If event-number is zero
set 'event number zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If event-number is not numeric or is greater than
maximum

set 'event number greater than maximum'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK

1. If mailbox-name doesn't match that in EVENT-BLOCK
set 'invalid event block for mailbox named'

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-TYPE is not 01 (RECEIVE)
set 'not a receive event block' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

3. If EVENT-OUTSTANDING is 01 (event is outstanding)
set 'only one outstanding receive permitted'

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. CHECK IF MAILBOX EXISTS

1. Serialize use of mailbox

2. Load address of COMMON TABLE from TWA (contains
MAILBOX TABLE)

3. Point to MAILBOX TABLE entry (address saved in
EVENT-BLOCK)

4. If entry not for this mailbox
set a 'system-dependent error' STATUS-CODE

3-5

DS 620143300
1 November 1985

LINK to ERRPRO to log error
Release use of mailbox
RETURN to caller

5. If previous RECEIVE was returned (implied cancel)

remove the first message from the mailbox

D. PRIME EVENT-BLOCK

1. Set EVENT-NUMBER to that passed,
OUTSTANDING-EVENT to 01

E. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. Release use of mailbox

3. RETURN to caller

3.4 Get Message

The GETMSG primitive routine is in program OSIIPC.

CALL 'GETMSG' USING IMPUT-MAILBOX-NAME
BUFFER
BUFFER-SIZE
NUMBER-OF-BYTES
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If buffer-size is zero
set 'buffer size zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If buffer-size is not numeric or greater than max
set 'buffer size greater than maximum' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK

3-6

LBV 'i

DS 620143300
1 November 1985

1. If mailbox-name doesn't match that in EVENT-BLOCK
set 'invalid event block for mailbox named'

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-TYPE is not 01 (RECEIVE)
set 'not a receive event block' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

3. If EVENT-OUTSTANDING is zero (no event
outstanding)

set 'no receive outstanding' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. READ FIRST MESSAGE FROM MAILBOX

1. Serialize on mailbox

2. Find mailbox
address of MAILBOX TABLE entry in EVENT-BLOCK
address of mailbox in MAILBOX TABLE entry

3. If current byte-count equals zero
set 'receive not satisfied' STATUS-CODE
LINK to ERRPRO to log error
release use of mailbox
RETURN to caller

4. If first message is longer than buffer-size
set 'buffer too small' STATUS-CODE
LINK to ERRPRO to log error
clear buffer to blanks

else (data is lost)

move first message to caller's buffer
set number-of-bytes to length of message
set 'successful completion' STATUS-CODE

5. Remove message read from mailbox
subtract message length from current-byte-count
adjust displacements

D. CLEAR OUTSTANDING RECEIVE

3-7

DS 620143300
1 November 1985

1. Set OUTSTANDING-EVENT to 00

2. Clear ECB in EVENT-BLOCK

E. RETURN CALL TO CALLER

1. Release use of mailbox

2. RETURN to caller

3.5 Delete Mailbox

The DELMBX primitive routine is in program OSIIPC.

CALL 'DELMBX' USING INPUT-MAILBOX-NAME
EVENT-BLOCK-nn

STATUS.

FUNCTIONS PERFORMED:

A. CHECK EVENT-BLOCK

1. If mailbox-name doesn't match that in EVENT-BLOCK
set 'invalid event block for mailbox named'

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-TYPE is not 01 (RECEIVE)
set 'not a receive event block' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. DELETE MAILBOX

1. Serialize on mailbox and MAILBOX TABLE

2. Find mailbox entry in MAILBOX TABLE

3. Remove MAILBOX TABLE entry

4. FREEMAIN mailbox storage

C. RELEASE THE EVENT-BLOCK

1. Re-initialize the EVENT-BLOCK to character O's

3-8

or .1 .

DS 620143300
1 November 1985

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. Release control of mailbox and MAILBOX CODE

3. RETURN to caller

3.6 Release Event Block

The RELEVB primitive routine is in program OSIIPC

CALL 'RELEVB' USING MAILBOX-NAME (not used in IBM Interface)
EVENT-BLOCK
STATUS.

FUNCTIONS PERFORMED:

A. RELEASE THE EVENT-BLOCK

1. Re-initialize the EVENT-BLOCK to character O's

B. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

3.7 Set Timer

The SETTIM primitive routine is in program OSIIPC.

CALL 'SETTIM' USING TIME-INTERVAL
EVENT-NUMBER
EVENT-BLOCK-n
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If event-number is zero
set 'event number zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

3-9

........... '

DS 620143300

1 November 1985

2. If event-number is not numeric or is greater than
22

set 'event number greater than maximum'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

3. If interval requested is zero
set 'time interval zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

4. If interval requested is not numeric or is greater
than 235959

set 'time interval greater than maximum'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK

I. If EVENT-BLOCK is not all zeros
set 'event block not initialized' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. PRIME EVENT-BLOCK AND OTHER CONTROL AREAS

1. Set EVENT-NUMBER to that specified,
EVENT-TYPE to 02 (TIMER)
EVENT-OUTSTANDING to 01

2. Store address of Timer EVENT-BLOCK in TWA

3. Calculate actual expiration time and store in TWA

4. Store address of timer ECB (in TASK LIST TABLE) in
TWA

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

3.8 Cancel Timer

3-10

DS 620143300
1 November 1985

The CNLTIM primitive routine is in program OSIIPC.

CALL 'CNLTIM' USING EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If EVENT-TYPE is not 02 (timer)
set 'not a timer event block' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. CANCEL TIMER REQUEST

1. Clear the TWA timer-related fields

"2. Re-initialize the EVENT-BLOCK (character O's)

C. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

3.9 Wait for an Event

The WAITnn primitive routine is in program OSIIPC.

CALL 'WAITnn' USING EVENT-NUMBER
STATUS
NUMBER-OF-EVENT-BLOCKS
EVENT-BLOCK-nn

EVENT-BLOCK-mm.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If number-of-event-blocks is zero
set 'number of event blocks zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If number-of-event-blocks is not numeric or is

3-11

DS 620143300
1 November 1985

greater than 22
set 'number of event blocks greater than max'

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. FIND THE ACTIVE EVENT-BLOCKS (THOSE WITH OUTSTANDING
EVENTS)

1. If fewer EVENT-BLOCKs are passed than
NUMBER-OF-EVENT-BLOCKS

set 'fewer event blocks passed than count'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

- 2. If no active EVENT-BLOCKs
set 'no requests outstanding' STATUS-CODE
LINK to ERRPRO to log error11 RETURN to caller

3. If any duplicate EVENT-NUMBERs among the active
EVENT-BLOCKs

set 'event numbers not unique' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. CHECK EACH ACTIVE EVENT-BLOCK FOR ALREADY-COMPLETED
EVENTS

1. TIMER event:
check expiration time against current time
if elapsed

If EVENT-NUMBER is lowest of those completed
save EVENT-NUMBER and address of EVENT-BLOCK

else
issue STIMER REAL with exit routine.

STIMEXIT. which posts timer ECB in
EVENT-BLOCK (the exit finds the ECB by
searching the TASK LIST TABLE by TCB
addr)

add timer ECB addr to WAIT list

2. RECEIVE events:
serialize on mailbox
find mailbox

address of MAILBOX TABLE entry in

3-12

DS 620143300

1 November 1985

EVENT-BLOCK
address of mailbox storage in MAILBOX TABLE

entry
if any messages in mailbox,
POST the ECB in the EVENT-BLOCK
if EVENT-NUMBER is lowest of those completed

save EVENT-NUMBER and address of
EVENT-BLOCK

else
clear ECB
add ECB address to WAIT list

release use of mailbox

3. LAN RECEIVE events:
check ECB in the EVENT-BLOCK
if POSTed

if EVENT-NUMBER is lowest of those
completed

save EVENT-NUMBER and address of
EVENT-BLOCK

else
add ECB address to WAIT list

D. IF NO EVENTS HAVE COMPLETED,
WAIT ON THE LIST OF UNCOMPLETED EVENTS

1. WAIT on the list of ECB's until control is
returned (at least one event has completed)

E. OF THE EVENTS THAT HAVE COMPLETED,
RETURN THE HIGHEST PRIORITY EVENT

1. Search the ECB list for completed events

2. If EVENT-NUMBER is lowest of those completed
save EVENT-NUMBER and address of EVENT-BLOCK

3. Set caller's EVENT-NUMBER to that saved (highest
priority)

4. If the returned event is a timer,
re-initialize the EVENT-BLOCK (character O's)
clear TWA timer-related fields

F. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

3-13

DS 620143300
1 November 1985

2. RETURN to caller

3.10 Log an Error Message

The ERRPRO primitive routine is in program OSIERR.
This program can be called from an ICAM/IISS program directly or
be LINKed to/from the IPC, PRC or IHC programs. It formats and
time-stamps the error message and sends it to the mailbox for
the Error Log Write task.

CALL 'ERRPRO' USING MESSAGE-NUMBER
PROGRAM-NAME
MESSAGE-TEXT.

FUNCTIONS PERFORMED:

A. BUILD ERROR MESSAGE

1. Concatenate parameters into one message

B. SEND ERROR MESSAGE TO ERROR LOG WRITE TASK

1. Send message to mailbox ERRMBX

2. If any error, ignore it

C. RETURN CONTROL TO CALLER

1. RETURN to caller

3.11 Terminate Processing

The ENDRUN primitive routine is in program OSIIBM.

CALL 'ENDRUN'.

STATUS CODES:
none (control is not returned)

FUNCTIONS PERFORMED:

A. TERMINATE THE CALLER'S PROGRAM

1. Restore the ATTACH stub's registers and RETURN

3-14

DS 620143300
1 November 1985

SECTION 4

PROCESS CONTROL PRIMITIVES (PRC)

4.1 Create Process

The CRTPRC primitive routine is in program OSIPRC.

CALL 'CRTPRC' USING AP-NAME
PROCESS-NAME
PRIORITY
TYPE-FLAG
DIRTBL
NTM-STATUS-CODE
OPSY-RETCODE

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If ap-name contains embedded blanks
set 'invalid application name' in NTM-RETURN
LINK to ERRPRO to log error
RETURN to caller

2. If process-name contains embedded blanks
set 'invalid process name' in NTM-RETURN
LINK to ERRPRO to log error
RETURN to caller

3. If type-flag not valid
set 'invalid priority' in NTM-RETURN
LINK to ERRPRO to log error
RETURN to caller

4. If priority not valid *not done now, NTM
doesn't use it*

set 'invalid priority' in NTM-RETURN
LINK to ERRPRO to log error
RETURN to caller

B. CHECK FOR DUPLICATE PROCESS-NAME

1. Load address of COMMON TABLE from TWA
(contains TASK LIST TABLE and PROGRAM
RE-ROUTING TABLE)

4-1

DS 620143300
1 November 1985

2. Serialize on the TASK LIST TABLE by

process -name

3. Search TASK LIST TABLE by process-name

4. If duplicate process-name
set 'duplicate process name' in NTM-RETURN
LINK to ERRPRO to log error
release control of TASK LIST TABLE
RETURN to caller

C. DETERMINE IF REQUEST SHOULD BE RE-ROUTED

1. Search PROGRAM RE-ROUTING TABLE using ap-name
length of compare is in table entry.
so the search can be generic

D. IF ENTRY FOUND, RE-ROUTE CREATE PROCESS REQUEST
*** not implemented ***
1. Format create-process message:

'CRTPRC PARMS@ ,ECB@

2. Release control of the TASK LIST TABLE

3. Send message to mailbox specified in entry

4. WAIT on RE-ROUTE ECB

5. If POSTed RE-ROUTE ECB not zeros
set 'create process failed' in NTM-RETURN
LINK to ERRPRO to log error

else

set 'successful completion' in NTM-RETURN

6. RETURN to caller

E. IF ENTRY NOT FOUND, CREATE THE PROCESS

1. Search TASK LIST TABLE for an empty slot
If not empty slot is found,

GETMAIN additional storage, chain and
format it
LINK to ERRPRO to record the overflow

4-2

DS 620143300
1 November 1985

2. Format TASK LIST TABLE entry
move in process-name, ap-name, task

creation time
clear end-of-task ECB

3. Create the process
ATTACH EP-(ATTACH-STUB)

PARAM-(paraumeter list).
(passed to Create Process)

ECB-(END-OF-TASK ECB),
(in TASK LIST TABLE entry)

dispatching priority - -1, (default)
ETXR-(END-OF-TASK exit routine address)

F. RETURN TO CALLER

1. Set 'successful completion' in NTM-RETURN

2. Release control of the TASK LIST TABLE

3. RETURN to caller

4.2 Delete Process

The DELPRC primitive routine is in program OSIPRC.

CALL 'DELPRC' USING AP-NAME PROCESS-NAME
NTM-STATUS-CODE
OPSYS-RETCODE.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If process-name contains embedded blanks
set 'invalid process name' in NTM-RETURN
LINK to ERRPRO to log error
RETURN to caller

B. DETERMINE IF REQUEST SHOULD BE REROUTED

1. Load address of COMMON TABLE from TWA
(contains PROGRAM RE-ROUTING TABLE)

2. Search PROGRAM RE-ROUTING TABLE using process-name
***note that this routine assumes that ap-name * **

4-3

DS 620143300
1 November 1985

***is the same as the first part of

process-name***
length of compare is in table entry,
so the search can be generic

C. IF ENTRY FOUND, RE-ROUTE DELETE PROCESS REQUEST
*** not implemeted ***

1. Format delete-process message:

'DELPRC PARM@ ,ECB@

2. Send message to mailbox specified in entry

3. WAIT on RE-ROUTE ECB not zeros

4. If POSTed RE-ROUTE ECB not zeros
set 'delete process failed' in NTM-RETURN
LINK to ERRPRO to log error

else

set 'successful completion' in NTM-RETURN

5. RETURN to caller

D. IF ENTRY NOT FOUND, DELETE THE PROCESS

1. Search TASK LIST TABLE for process-name

2. If process-name not found (the process has already
ended)

3. Pick up TCB address of process (from TASK LIST
TABLE entry)

4. Issue DETACH TCB-(TCB address)

5. LINK to the End-of-Task exit

E. RETURN TO CALLER

1. Set 'successful completion' in NTM-RETURN

2. RETURN to caller

4.3 Request Process Name

4-4

F *

DS 620143300
1 November 1985

The GETNAM primitive routine is in program OSIPRC.

CALL 'GETNAM' USING PROCESS-NAME
RETURN CODE
NTM-STATUS-CODE.

FUNCTIONS PERFORMED:

A. RETURN PROCESS-NAME

1. Pick up our process-name from TWA

2. Move it to PROCESS-NAME

B. RETURN TO CALLER

1. RETURN to caller

4-5

DS 620143300
1 November 1985

SECTION 5

PRC SUPPORT ROUTINES

5.1 ATTACH Stub (Program OSIATCH)

Control will be passed to the ATTACH stub when any task is
ATTACHed as a result of a Create Process request.

ATTACH 'ATTACH-Stub' PARAM- AP-NAME
PROCES S-NAME
PRIORITY
TYPE-FLAG
NTM-STATUS-CODE

OPSYS-RETCODE.

FUNCTIONS PERFORMED:

A. OBTAIN TASK WORK AREA

1. GETMAIN Task Work Area (TWA) which consists of
Register Save Areas (for OSIIBM and the ATTACH
stub) and the Task Work Area for the primitives

2. Clear TWA and prime the TWA indicator field

B. PASS CONTROL TO THE APPLICATION PROGRAM

1. LINK to AP-NAME program passing
address of original parameter list in register
1
address of ATTACH Stub's Register Save Area
(in the TWA) in register 13

2. When control is returned, RETURN to caller (MVS)

5.2 End-of-task Exit (Program OSIETXR)

Control will be passed to the ETXR routine by MVS when a subtask
created by an ATTACH macro completes (normally or abnormally),
or when DELPRC LINKs to it after DETACHing a subtask.

FUNCTIONS PERFORMED:

A. FIND AND CHECK THE TASK LIST TABLE ENTRY

5-1

DS 620143300
1 November 1985

1. LOAD COMMON TABLE (contains the TASK LIST TABLE

and the MAILBOX TABLE)

2. Serialize on TASK LIST TABLE

3. Search TASK LIST TABLE by TCB address

4. Check return code or completion code in
END-OF-TASK ECB in the TASK LIST TABLE entry

5. If return code not zeros

LINK to ERRPRO to log abend

B. FIND AND REMOVE ANY TABLE ENTRIES

1. Serialize on MAILBOX TABLE

2. Search MAILBOX TABLE by TCB address for
uailbox(es) and remove table entries

3. Release control of MAILBOX TABLE

4. Remove TASK LIST TABLE

5. Release control of TASK LIST TABLE

C. REMOVE SUBTASK FROM SYSTEM

1. If subtask was not DETACHed by DELPRC.
DETACH subtask

D. RETURN TO CALLER

1. RETURN to caller (MVS)

5-2

DS 620143300
1 November 1985

SECTION 6

ENVIRONMENT CONTROL MODULES

6.1 MVS Initialization (Program OSIMVSI)

This program is the first program executed when the region
comes up (it is the program specified in the EXEC card of the
JCL, or as the program to be executed under TSO TEST).

It LOADs the COMMON TABLE, and then searches the MODULE
LOAD TABLE and LOADs any modules specified, and searches the
TASK ATTACH TABLE and calls CRTPRC to ATTACH any tasks
specified, and then searches the PROGRAM LINK TABLE and LINKs to
any programs specified. One program that must be in the PROGRAM
LINK TABLE is the NTM Monitor AP.

The reason this program issues LOADs of various modules,
such as the END-OF-TASK EXIT routine and the VTAM CONTROL
BLOCKS, is to insure that these modules are always in virtual
storage by keeping their use counts non-zero.

The programs that are ATTACHed are various independent
processes, such as the ERROR LOG WRITE task.

NOTE: Since this facility is table-driven, other modules or
independent tasks could easily be added in the future
--such as a task that submits a batch job when a Create
Process request is re-routed to it. The section of this
document on the COMMON TABLE contains a description of the
tables that drive this program.

FUNCTIONS PERFORMED:

A. INITIALIZATION

1. GETMAIN Task Work Area (TWA) which consists of
Register Save Areas (for OSIIBM and OSIMVSI) and
the Task Work Area for the primitives

2. Clear TWA and prime the TWA indicator field

3. LOAD COMMON TABLE
contains: MODULE LOAD TABLE

TASK ATTACH TABLE
PROGRAM LINK TABLE

6-1

DS 620143300
1 November 1985

TASK LIST TABLE

B. LOAD OTHER MODULES

1. Search MODULE LOAD TABLE

NOTE: This table will contain such modules as:
ETXR routine (end-of-task exit) VTAM Control
Block Module(s)

2. For any entries found.

LOAD 'module-name'

C. ATTACH OTHER TASKS

1. Search TASK ATTACH TABLE

NOTE: This table will contain such tasks as:
Error Log Write Task

2. For any entries found,
call CRTPRC to create the task, passing the
parameter list in the table entry

D. LINK TO OTHER PROGRAMS

1. Search PROGRAM LINK TABLE

NOTE: This table will contain such programs as:
NTM Monitor AP

2. For any entries found,
LINK 'AP-program-name',

PARAM-(param list)
(same as in Create Process)

E. RETURN TO CALLER

1. When control is returned to this program,
(last program LINKed to having returned)
RETURN to caller (MVS)

(IISS system terminates)

6.2 Common Table

Description:

6-2

az

DS 620143300
1 November 1985

The COMMON TABLE is a load module generated from tosembler
macro calls, which is used to hold information required by all
tasks in the system. The initial contents of this table will be
set up by OSI but can easily be changed in the future if any
changes are desired or new facilities are added.

NOTE: The COMMON TABLE must be link-edited as re-entrant, so
that all tasks will reference the same copy of the table.
To mark it re-entrant, add the RENT option to the PARM of
the link-edit job step.

The COMMON TABLE actually consists of several tables:

1. MODULE LOAD TABLE

2. TASK ATTACH TABLE

3. PROGRAM LINK TABLE

4. MAILBOX TABLE TABLE

5. TASK LIST TABLE

6. PROGRAM RE-ROUTING TABLE

The first three tables are used by the MVS INITIALIZATION
program to initialize the region before control is given to the
NTM Monitor AP.

1. The MODULE LOAD TABLE contains entries for those load
modules and subroutines which should be in virtual
storage at all times. By issuing a LOAD for these
modules, and then never deleting the modules, the use
counts of the modules will always be above zero,
thereby insuring that they will be kept in virtual
storage.

S,mple macro calls are:

COMTBL TYPE=LOAD,MODULE-OSIETXR
COMTBL TYPE-LOAD,MODULE=xxxx (xxxx - VAX

port-name)

2. The TASK ATTACH TABLE contains entries for those
independent tasks that need to be started when the
region is first brought up. For now, the only entry in
this table will be for the Error Log Write Task, but

6-3

DS 620143300
1 November 1985

it might be desirable in the future to have a task
which submitted a batch job when a Create Process
request was re-routed to it.

Sample macrocalls are:

COMTBL TYPE-ATTACH,APNAME-ERLOG,PRNAME-ERLOG1.
PRIORITY-OTYPEFLG-1

COMTBL TYPE-ATTACHAPNAME-SUBMT.PRNAME-SUBMT1.
PRIORITY-20,TYPEFLG-1

A TYPE-ATTACH macro call will result in a table
entry containing a parameter list used by OSIMVSI
in a CRTPRC call to create the subtask requested.

3. The PROGRAM LINK TABLE contains entries for those
programs which should be LINKed to by the MVS
INITIALIZATION program. This list could include
various initialization and termination programs as
well as the NTM Monitor AP itself, although for now
the NTM Monitor AP is the only entry.

Sample macro calls are:

COMTBL TYPE-LINK,APNAME-SETUP,PRNAME-SETUP1
COMBTL TYPE-LINK,APNAME-NTMAPPRNAME-NTMAP1
COMBTL TYPE-LINKAPNAME-TRMNMT, PRNAME-TRMNTl

A TYPE-LINK macro call will result in a parameter list
used in a LINK to the APNAME program issued by
OSIMVSI, passing a parameter list, the same as that
passed for Create Process.

4. The MAILBOX TABLE is used to identify and locate every
mailbox in the system. An entry in this table is
allocated when the mailbox is deleted.

An entry in this table consists of:

the mailbox name,
the address of the storage for the mailbox,
the address of the TCB of the mailbox owner, and
the address of the ECB to POST when a message is
sent to the mailbox (in the EVENT-BLOCK).

The number of MAILBOX TABLE entries to allow for is
determined by the expected activity of the system and

6-4

NO

DS 620143300
1 November 1985

is specified as a parameter in the TYPE-INITIAL macro
used to assemble the COMMON TABLE. Provision is made
to allocate additional storage for table entries in
case the table gets filled, and the number of
additional entries is also specified in the macro.

A sample macro call is:

COMTBLE TYPE-INITIAL.MBXS-150.MBX-70

5. The TASK LIST TABLE is used to keep track of every
task executing in the system. An entry in the table
is allocated when a process is created and deleted
when the task ends normally or is deleted by a Delete
Process request.

An entry in this table consists of:

the process name,
the application name,
the type flag,
the address of the TCB for the task,
an ECB that MVS POSTs when the task completes, and
the task creation time.

The number of entries to allow for is specified as a
parameter in the TYPE-INITIAL macro for the COMMON
TABLE. As with the MAILBOX TABLE, provision is made
to allocate additional storage for table entries in
case the table gets filled, and the number of
additional entries is also specified in the macro.

A sample macro call is:
COMTBL TYPE=INITIAL,TSKS-lOOTSKI-50

6. The PROGRAM RE-ROUTING TABLE could be used for two
purposes:

a. To reroute Create Process requests to a task that
causes the process to be started in another
environment, such as to a task that submits batch
jobs, and

b. To control the subtask hierarchy in the native
VTAM region by re-routing a Create Process request
to a task that will do the ATTACH on behalf of the
caller, rather than attaching the subtask directly

6-5

DS 620143300
1 November 1985

to the originating task.

The program name supplied can be the full program
name, or a generic name, of the length implied. This
would allow, for example, to re-route to batch all
query processors beginning with QP.

A sample macro call is:

COMTBL TYPE-REROUTE,PROGRAM-COMPUTO-MVSMBX
CONBTL TYPE-REROUTE,PROGRAN-QPTO-BTCHMBX

NOTE: The code will be put into the Create Process
primitive to search this table and to be able to
re-route the request, but for now no tasks will
exist to accept the re-routed request, since
neither of the above functions is currently
planned for.

Sample source input to generate the COMMON TABLE looks
like this:

COMBTL TYPE-INITIAL,MBXS-150,MABXI-70,TAKS-100,
TSKI-50

CONTBL TYPE-LOAD,MODULE-OSIETXR
CONTBL TYPE-LOAD,NODULE-xxxx

(xxxx - VAX port name)
COMTBL TYPE-ATTACH,APNAME-ERLOGPRNAME-ERLOGI

PRIORITY-1OTYPEFLAG-l
COMTBL TYPE-LINK,APNAME-NTMAP,PRNAME-NTMAPI
COMBTL TYPE-REROUTE,PROGRAM-QP,TO-BTCHNBX
CONBTL TYPE-FINAL

6-6

DS 620143300
1 November 1985

SECTION 7

INTER-HOST PRIMITIVES (IHC)

7.1 Initialize Communication with the VAX or Honeywell Level 6

The INILAN primitive routine is in program OSIIHC.

CALL 'INILAN' USING PORT-NAME
RCV-BLOCK
XMIT-BLOCK
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If PORT-NAME is invalid
set a 'system-dependent error' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-BLOCK is not all zeros
set 'event block no initialized' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. CHECK IF COMMUNICATION ALREADY ESTABLISHED

1. LOAD VTAM control block load module (name -
PORT-NAME)

2. If already initialized
(allow a second initialize to be issued)
a. CLSDST netname (obtained from VTAM c.b.

module)

C. PRIME CONTROL BLOCKS

*' 1. Move zeros to RCV-BLOCK and XMIT-BLOCK

2. Move PORT-NAME to RCV-BLOCK and XMIT-BLOCK

3. Move PORT-NAME to EVENT-BLOCK and TWA

.7-1

DS 620143300
1 November 1985

4. Set address of EVENT-BLOCK in TWA

D. ESTABLISH CONTROL OF PORT-NAME

1. OPEN ACB for this APPLID
OPNDST netname

2. If any error
set a 'system-dependent error' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

E. RETURN TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

7.2 Transmit a Message to the VAX or Honeywell Level 6

The XMTLAN primitive routine is in program OSIIHC.

CALL 'XMTLAN' USING XMIT-BLOCK
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If number-of-bytes is zero
set 'number of bytes zero' STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

2. If number-of-bytes is not numeric or is
greater than the max
set 'number of bytes greater than maximum'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK AND OTHER CONTROL BLOCKS

1. If PORT-NAME (in TWA) not in XMIT-BLOCK and
EVENT-BLOCK

set 'invalid event block for LAN'

7-2

DS 620143300

1 November 1985

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If receive is outstanding (EVENT-OUTSTANDING
is 01)

set 'receive from LAN is outstanding'
STATUS -CODE

LINK to ERRPRO to log error
RETURN to caller

C. TRANSMIT THE MESSAGE

1. SEND the message

2. If any error,
set a 'system-dependent error' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

7.3 Receive a Message from the VAX or Honeywell Level 6

The RCVLAN primitive routine is in program osiihc.

CALL 'RCVLAN' USING RCV-BLOCK
EVENT-NUMBER
EVENT-BLOCK-NN
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If buffer-size is zero
set 'buffer size zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If buffer-size is not numeric or is greater
than max

set 'buffer size greater than maximum'

7-3

'r d

DS 620143300
1 November 1985

STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

3. If event-number is zero
set 'event number zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

4. If event-number is not numeric or is greater
than max

set 'event-number greater than maximum"
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK AND OTHER CONTROL BLOCKS

1. If PORT-NAME (in TWA) not in RCV-BLOCK and
EVENT-BLOCK

set 'invalid event block for LAN' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If RECEIVE is outstanding already
(EVENT-OUTSTANDING is 01)

set 'only one outstanding receive permitted'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

3. If previous RECEIVE was returned
(EVENT-OUTSTANDING is 02)

set OUTSTANDING-EVENT to 00
Clear ECB (COMM doesn't want data)

C. PRIME EVENT-BLOCK AND OTHER REQUIRED AREAS

1. Set EVENT-TYPE - 03
EVENT-NUMBER - event-number
OUTSTANDING-EVENT - 01
address of buffer, buffer length

D. ISSUE RECEIVE

1. RECEIVE. asynchronous

7-4

DS 620143300
1 November 1985

2. If any error
set a 'system-dependent error' STATUS-CODE
LINK to ERRPRO to log erro
RETURN to caller

E. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

7.4 Get a Message from the VAX or Honeywell Level 6

The GETLAN primitive routine is in program OSIIHC.

CALL 'GETLAN' USING RCV-BLOCK
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If buffer size is zero
set 'buffer size zero' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If buffer-size is not numeric or is greater
than max

set 'buffer size greater than maximum'
STATUS-CODE

LINK to ERRPRO to log error
RETURN to caller

B. CHECK EVENT-BLOCK

1. If PORT-NAME (in TWA) not in RCV-BLOCK and
EVENT-BLOCK

set 'invalid event block for LAN' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-TYPE is not RECEIVE from LAN (03)
set 'not a receive terminal block' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

7-5

d

.%$

DS 620143300
1 November 1985

3. If no RECEIVE from LAN is outstanding
(EVENT-OUTSTANDING - 00)

set 'no receive outstanding' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

C. GET MESSAGE FROM TERMINAL

1. If ECB (in EVENT-BLOCK) is not POSTed (by
VTAM)

set 'receive not satisfied' STATUS-CODE
RETURN

2. If data length exceeds buffer-size
set 'buffer too small' STATUS-CODE

(data is lost)
LINK to ERRPRO to log error

else

move data to buffer
set NUMBER-OF-BYTES
set 'successful completion' STATUS-CODE

D. CLEAR OUTSTANDING RECEIVE FROM LAN

1. Set OUTSTANDING-EVENT to 00

2. Clear ECB

E. RETURN CONTROL TO CALLER

1. RETURN to caller

7.5 Cancel a Receive from the VAX or Honeywell Level 6

The CNLLAN primitive routine is in program OSIIHC.

CALL 'CNLLAN' USING RCV-BLOCK
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. CHECK EVENT-BLOCK

7-6

DS 620143300
1 November 1985

1. If PORT-NAME (in TWA) not in RCV-BLOCK and
EVENT-BLOCK

set 'invalid event block for LAN' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

2. If EVENT-TYPE not a RECEIVE from LAN
(EVENT-TYPE - 03)
set 'not a receive terminal block' STATUS CODE
LINK to ERRPRO to log error
RETURN to caller

3. If no RECEIVE from LAN is outstanding
set 'no receive outstanding' STATUS-CODE
LINK to ERRPRO to log error
RETURN to caller

B. CANCEL RECIEVE FROM LAN

1. CANCEL RECEIVE

2. Set OUTSTANDING-EVENT to 00

3. Clear ECB (COMM doesn't want data)

C. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

7.6 Terminate Communication with the VAX or Honeywell Level 6

The TRMLAN primitive routine is in program OSIIHC.

CALL 'TRMLAN' USING PORT-NAME
RCV-BLOCK
XMIT-BLOCK
EVENT-BLOCK-nn
STATUS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If PORT-NAME is invalid
set a 'system-dependent error' STATUS-CODE

7-7

DS 620143300

1 Novelber 1985

LINK to ERRPRO to log error

RETURN to caller

B. CLEAR CONTROL BLOCKS

1. Move zeros to RCV-BLOCK and XMIT-BLOCK

2. Move zeros to EVENT-BLOCK

3. Clear TWA fields

C. TERMINATE CONTROL OF PORT-NAME

1. CLSDST netname
CLOSE ACB for this APPLID

2. If any error
set a 'system-dependent error' STATUS-CODE
LINK to ERRPRO tolog error
RETURN to caller

D. RFTURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CODE

2. RETURN to caller

7-8

DS 620143300
1 November 1985

SECTION 8

INTERFACE TO CICS APPLICATION

The support for a CICS application such as PIOS is handled
by the following software:

1. A Pseudo-AP, which runs as an MVS subtask in the same
region as the NTM, and acts like an integrated AP.
It calls the VTI to convert data streams to and from
3270 format and also calls the CICS interface to send
those data streams to CICS and receive data back from
CICS.

2. OSICICS, the interface to CICS, which is the only
layer of this software which knows it is dealing with
CICS. It is called by the Pseudo-AP to send and
receive data streams to and from CICS. It in turn
branches to the 3270 emulator program to perform the
actual communication with CICS.

It also generates some messages for CICS, such as a
CICS sign-on message, and sign-off message and
interprets the output fiam CICS as to whether or not
the requested function has competed successfully.

3. 0I53270, a 3270 emulator program in native VTAM, which
logs on to CICS, and sends and receives data to and
from CICS as if it were a 3270. This program does not
know it is dealing with CICS but merely handles the
data transfer to whatever VTAM application it is in
communication with.

4. A remote CICS, running the CICS application (PIOS).

8.1 Pseudo-AP

The Pseudo-AP is started by the NTM MPU for the PIOS AP
cluster. It is called a Pseudo-AP because it is not the real
application. It performs the following functions:

A. INITIALIZE

1. CALL 'INITAL' (NTM service) to create input mailbox

2. CALL 'GETUSR' (NTM service) to obtain user id

8-1

go&=-

DS 620143300
1 November 1985

3. CALL 'INICIS' (CICS interface) USING USER-ID
BUFFER
BUFFER-LENGTH
EVENT-BLOCK-C
STATUS-CICS.

Note: Data returned in the buffer will consist of a

data stream to clear the screen.

B. SEND MESSAGE TO TERMINAL OPERATOR AND RECEIVE RESPONSE

1. CALL 'VTI???' (VTI 3270 to neutral) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI.

Note: Buffer and number-of-bytes will be modified to
contain the neutral format data stream to be
sent to the terminal and its length.

2. CALL 'OIVTI' (VTI output/input) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES

STATUS-VTI.

Note: The VTI will send the neutral data stream to
the terminal attached to the VAX and wait
for input from the operator. When control is
returned to this program, the buffer and
number-of-bytes will be modified to contain
the neutral format data stream received back
from the terminal and its length.

3. When response is received from operator,

CALL 'VTI??9' (VTI neutral to 3270) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI.

Note: Buffer and number-of-bytes will be modified to
contain the 3270 format data stream to send to CICS
and its length

C. END PROCESS IF OPERATOR INDICATES TO

8-2

DS 620143300
1 November 1985

1. IF ATTENTION-KEY (equivalent of the break key in the
VAX) has been struck:

a. Issue a call to OSICICS to terminate:
CALL 'TRMCIS' USING EVENT-BLOCK-C

STATUS-CICS.

b. Format a session terminate message for the

operator

c. Convert the data stream to neutral

CALL 'VTI???' USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI.

d. Send to operator with no response

CALL 'OTVTI' USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI.

e. Terminate process

CALL 'TRMNAT' (NTM service) using...
(process terminates)

D. SEND OPERATOR INPUT TO CICS AND RECEIVE RESPONSE

1. CALL 'SNDCIS' (CICS interface) USING BUFFER
NUMBER-OF-BYTES
EVENT-BLOCK-C
STATUS-CICS.

Note: Data will be sent to CICS

2. CALL 'RCVCIS' (CICS interface) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
EVENT-BLOCK-C
STATUS-CICS.

3. CALL 'GETCIS' (CICS interface) USING BUFFER
BUFFER-LENGTH
NUMBER OF BYTES
EVENT-BLOCK-C
STATUS-CICS.

8-3

DS 620143300
1 November 1985

4. If receive is satisfied, branch to step B.1.

E. TERMINATE PROCESS IF SESSION IS LOST

1. If receive is not satisfied,
a. Set timer

CALL 'SETTIM' USING TIME-INTERVAL
EVENT-NUMBER
EVENT-BLOCK-T
EVENT-BLOCK-C
STATUS-CODE.

b. WAIT for receive or timer to complete
CALL 'WAIT02' USING EVENT-NUMBER

STATUS-CODE
NUMBER-OF-EVENT-BLOCKS
EVENT-BLOCK-T.

2. If EVENT-NUMBER indicates timer expired.
a. Cancel outstanding RECEIVE

CALL 'CNLCIS' USING EVENT-BLOCK-C
STATUS-CICS.

b. Terminate 3270 emulation
CALL 'TRMCIS' USING BUFFER

BUFFER-LENGTH
EVENT-BLOCK-C
STATUS-CICS.

c. Format termination message for terminal operator

d. Send message to operator with no response

CALL 'VTI?99' (VTI 3270 to neutral) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI

CALL 'OTVTI' (VfI output) USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
STATUS-VTI.

e. Terminate

CALL 'TRMNAT (NTM service) using...
(process terminates)

8-4

DS 620143300
1 November 1985

3. If EVENT-NUMBER indicates receive was satisfied,
CALL 'GETCIS' (CICS interface) USING BUFFER

BUFFER-LENGTH
NUMBER-OF -BYTES
EVENT-BWOCK-C
STATUS-CICS.

4. Branch to step B.1.

8-5

DS 620143300
1 November 1985

SECTION 9

CICS INTERFACE PRIMITIVES

9.1 Initialize Communication with CICS

CALL 'INICIS' USING USER-ID
BUFFER
BUFFER-LENGTH
EVENT-BLOCK
STATUS-CICS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If parameter list is invalid
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

2. If user-id is blanks or zeros
set 'invalid user id' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

3. If buffer-length is zeros
set 'buffer length zero' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

4. If buffer-length is non-numeric or is greater than
max
set 'buffer length exceeds maximum' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. LOG ON TO CICS

1. Prime EVENT-BLOCK for INITIALIZE:
action code for initialize

2. Branch to OSI3270. passing the EVENT-BLOCK

3. If status indicates no session is available
set 'retry later' STATUS-CICS

9-1

DS 620143300
1 November 1985

Branch to ERPPRO to log the error
RETURN to caller

4. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

C. SIGN ON TO CICS

1. Build the SIGN-ON message for CICS in the caller's
buffer using the user-id that was passed

2. Prime EVENT-BLOCK for SEND:
action code for send
address of data
length of data

3. Branch to 0SI3270, passing the EVENT-BLOCK

4. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

D. RECEIVE RESPONSE FROM CICS TO SIGN ON

1. Prime EVENT-BLOCK for RECEIVE:
action code for receive
address of buffer
length of buffer

2. Branch to 0SI3270, passing the EVENT-BLOCK

3. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

4. Prime EVENT-BLOCK for GET:
action code for get
address of buffer
length of buffer

5. Branch to 0SI3270, passing the EVENT-BLOCK

6. If RECEIVE is not satisfied

9-2

................

DS 620143300
1 November 1985

set a timer and wait on the timer and the receive
RETURN to caller
(caller should issue a wait followed by another
GET)

7. If the timer expired,
prime EVENT-BLOCK for TERMINATION
branch to 0SI3270 to terminate communication
set 'initialization failed' STATUS-CICS
branch to ERRPRO to log the error
RETURN to caller

8. If the sign on was rejected (look at msg from
CICS)
prime EVENT-BLOCK for TERMINATION
branch to 0SI3270 to terminate communication
set 'initialization failed' STATUS-CICS
branch to ERRPRO to log the error
RETURN to caller

Note: The response sent by CICS to the SIGN-ON is

discarded.

E. FORMAT RESPONSE FOR OPERATOR

1. Build a CLEAR SCREEN data stream in the caller's
buffer ERASE WRITE, FREE KEYBOARD, NO DATA

2. Set NUMBER-OF-BYTES to the length of the data
stream

F. RETURN CONTROL TO CALLER

1. Set a 'successful completion'

2. RETURN to caller

9.2 Send Message to CICS

CALL 'SNDCIS' USING BUFFER
NUMBER-OF-BYTES
EVENT-BLOCK
STATUS-CICS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

9-3

DS 620143300
1 November 1985

1. If parameter list is invalid
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

2. If number-of-bytes is zeros
set 'number of bytes zero' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

3. If number-of-bytes is non-numeric or is greater
than max

set 'number of bytes exceeds maximum' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. SEND MESSAGE TO CICS

I. Prime EVENT-BLOCK for SEND:
action code for send
address of data
length of data

2. Branch to 0SI3270, passing the EVENT-BLOCK

C. CHECK RESPONSE

1. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CICS

2. RETURN to caller

9.3 Receive a Message from CICS

CALL 'RCVCIS' USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES
EVENT-BLOCK
STATUS-CICS.

9-4

DS 620143300
1 November 1985

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If parameter list is invalid
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

2. If buffer-length is zeros
set 'buffer length zero' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

3. If buffer-length is non-numeric or is greater than
max

set 'buffer length exceeds maximum' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. RECEIVE MESSAGE FROM CICS

1. Prime the EVENT-BLOCK for a RECEIVE:
action code for receive
address of buffer
length of buffer

2. Branch to 0SI3270, passing the EVENT-BLOCK

C. CHECK RESPONSE

1. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CICS

2. RETURN to caller

9.4 Get a Message from CICS

CALL 'GETCIS' USING BUFFER
BUFFER-LENGTH
NUMBER-OF-BYTES

9-5

DS 620143300
1 November 1985

EVENT-BLOCK

STATUS-CICS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If parameter list is invalid
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

2. If buffer-length is zeros
set 'buffer length zero' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

3. If buffer-length is non-numeric or is greater than

max
set 'buffer length exceeds maximum' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. GET MESSAGE FROM CICS

1. Prime EVENT-BLOCK for GET:
action code for get
address of buffer
length of buffer

2. Branch to 0S13270, passing the EVENT-BLOCK

C. CHECK RESPONSE

1. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

2. If receive is not satisfied
set 'receive not satisfied' in STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

3. Set NUMBER-OF-BYTES to length of message from CICS

D. RETURN CONTROL TO CALLER

9-6

i - ... - .- - -,[, , '

DS 620143300
1 November 1985

1. Set 'successful completion' STATUS-CICS

2. RETURN to caller

9.5 Cancel Receive from CICS

CALL 'CNLCIS' USING EVENT-BLOCK
STATUS-CICS.

FUNCTIONS PERFORMED:

A. VALIDATE PARAMETERS

1. If parameter list is invalid
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. CANCEL RECEIVE

1. Prime EVENT-BLOCK for a CANCEL:
action code for cancel

2. Branch to 0SI3270, passing the EVENT-BLOCK

C. CHECK RESPONSE

1. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

D. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CICS

2. RETURN to caller

9.6 Terminate Communication with CICS

CALL 'TRMCIS' USING BUFFER
BUFFER-LENGTH
EVENT-BLOCK
STATUS-CICS.

FUNCTIONS PERFORMED:

9-7

LM

DS 620143300
1 November 1985

A. VALIDATE PARAMETERS

1. If number of parameters is fewer than two
set 'invalid parameter list specified' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

B. SIGN OFF CICS

1. Build the SIGN-OFF message for CICS in the
caller's buffer

2. Prime EVENT-BLOCK for a SEND:
action code for send
address of data
length of buffer

3. Branch 0SI3270, passing the EVENT-BLOCK

4. If status indicates a VTAM error
set 'system-dependent error' STATUS-CICS
branch to ERRPRO to log the error
branch to LOG OFF CICS

5. Prime EVENT-BLOCK for a RECEIVE:
action code for receive
address of buffer
length of buffer

6. Branch to 0SI3270, passing the EVENT-BLOCK

7. If status Indicates a VTAM error
set 'system-dependent error' STATUS-CICS
branch to ERRPRO to log the error
branch to LOG OFF CICS

8. Prime EVENT-BLOCK for GET:

action code for get
address of buffer
length of buffer

9. Branch to 0SI3270. passing the EVENT-BLOCK

10. If RECEIVE has not completed
branch to LOG OFF CICS

9-8

K4U U

DS 620143300
1 November 1985

Note: The response sent by CICS to the SIGN-OFF

is discarded.

C. LOG OFF CICS AND VTAM

1. Prime EVENT-BLOCK for a TERMINATE:
action code for terminate

2. Branch to OSI3270, passing the EVENT-BLOCK

D. CHECK RESPONSE

1. If status indicates a VTAM error
set system-dependent error' STATUS-CICS
Branch to ERRPRO to log the error
RETURN to caller

E. RETURN CONTROL TO CALLER

1. Set 'successful completion' STATUS-CICS

2. RETURN to caller

'i9

9-9

DS 620143300
1 November 1985

SECTION 10

3270 EMULATOR PROGRAM

The 3270 emulator program is designed to appear to the CICS
as a local 3277 type terminal. All data flow control requests
are handled by VTAM. The normal flow send/receive mode is full
duplex. FM profile 2 and TS profile 2 are used.

The emulator program is linked to by OSICICS, which has
determined which function the 3270 emulator is to perform and
has placed the required parameters and tbe appropriate action
code in the EVENT-BLOCK. The address of the EVENT-BLOCK is
passed via a parameter list (with only one parameter) in
register 1 to 0SI3270.

FUNCTIONS PERFORMED:

A. INITIAL LOGON TO CICS

1. LOAD VTAM SLU TABLE and search for an available
entry

2. If no entry is available,
set 'no SLU control blocks available' in
EVENT-BLOCK
RETURN to caller
else mark the SLU TABLE entry in use

3. OPEN VTAM ACB

4. If OPEN failed,
release use of SLU TABLE entry in use

* .~set 'system dependent error' in EVENT-BLOCK
RETURN to caller

5. Issue a SETLOGON - this macro must be issued
before the 3270 emulator can request a session
(VTAM restriction)

6. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into
EVENT-BLOCK
RETURN to caller

10-1

DS 620143300
1 November 1985

7. Issue a REQSESS - this macro must specify the
applid of the application that the 3270 emulator
wishes to access

8. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into

EVENT-BLOCK
RETURN to caller

9. A WAIT is then issued which will be posted when
the SCIP exit gets control as a result of CICS
responding to the REQSESS which was issued
previously

10. The SCIP exit performs the following functions:

a. If a BIND has flowed from CICS

1. Issue an OPNSEC which acts as a positive
response to the BIND

2. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into

-EVENT-BLOCK RETURN to caller

3. POST ECB which is being waited on so the
mainline program can continue processing

b. If an UNBIND has flowed from CICS, POST the

ECB which the TERMSESS is waiting on

11. Set 'successful completion' in EVENT-BLOCK

12. RETURN to caller

B. SEND TO CICS

1. Issue an asynchronous SEND to CICS

2. WAIT on ECB to be POSTED by VTAM signaling
completion of operation

3. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feedback fields Into

10-2

DS 620143300
1 November 1985

EVENT-BLOCK

RETURN to caller

4. Set 'successful completion' in EVENT-BLOCK

5. RETURN to caller

C. RECEIVE from CICS

1. Issue an asynchronous RECEIVE from CICS

2. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into

EVENT-BLOCK
RETURN to caller

3. Set 'successful completion' in EVENT-BLOCK

4. RETURN to caller

D. GET data from CICS

1. If RECEIVE ECB has not been posted
set 'receive not satisfied' in EVENT-BLOCK
RETURN to caller

2. Clear RECEIVE ECB

3. Set 'successful completion' in EVENT-BLOCK

4. RETURN to caller

E. CANCEL an outstanding RECEIVE

1. Issue a RESETSR to cancel outstanding RECEIVE

2. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code aind feed back fields into

EVENT-BLOCK
RETURN to caller

3. Clear RECEIVE ECB

4. Set 'successful completion' in EVENT-BLOCK

10-3

DS 620143300
1 November 1985

5. RETURN to caller

F. TERMINATE session with CICS

1. Issue a TERMSESS to terminate session with CICS

2. WAIT on TERMSESS ECB which will be POSTED by SCIP
exit

3. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into

EVENT-BLOCK
RETURN to caller

4. CLOSE VTAM ACB

5. If register 15 is not zero
set 'system dependent error' in EVENT-BLOCK
move return code and feed back fields into

EVENT-BLOCK
RETURN to caller

6. Set 'successful completion' in EVENT-BLOCK

7. RETURN to caller

10-4

U " "" *. -. %* . *.**~*j~ ~ ' .."""- lei

DS 620143300
1 November 1985

APPENDIX A

MAILBOX LOGIC

BUFFER WRAPAROUND

The algorithm being used for mailboxes uses little cpu time
for data movement but is rather complex. A mailbox I a fixed
amount of storage, like a buffer, with messages being vritten to
and read from it concurrently. The mailbox routine must keep
track of where the first message to be read is and also where to
write the next message sent to the mailbox. The problem is
complicated by the fact that the messages are variable-length.

The routine keeps adding messages after the messages
already in the mailbox until a message being sent doesn't fit.
At this point, a check is made to see if the message vill fit at
the beginning of the mailbox. This will only happen if enough
messages have already been read from the mailbox. If the
message fits, it is put there, resulting in message sending
having wrapped around.

Message reading also wraps around. When a message is to be
read, but the spot where it is to be read from points beyond
where any data has been put, message reading wraps around to the
" ginning of the mailbox buffer.

The storage in the mailbox can get fragmented using this
technique. A message can be rejected even though there Is
enough space. because the space Is not contiguous, due to the
effects of wrapping around.

FUNCTIONS PERFORMED:

A. Sending a Message

If current-bytes - zero
set remove-displacement to zero
set insert-displacement to zero
set high-water-mark-displacement to zero
if msg-length - mbx-slze

move message to -buffer * 0,
add isg-length to insert-displacement
add msg-length to current-bytes
set high-water-mark-displacement to

insert-displacement

A

DS 620143300
1 November 1985

* else
return 'msg too long' error

If insert-displacement , remove-displacement
If insert-displaxement + msg-length - mbx-size

move message to (buffer + Insert-displacement)
add msg-length to current-bytes
set high-water-mark-displacement to

Insert-displ&cement
elIse

if msg-length .- remove-displacement
move message to (buffer + 0)
set insert-displ&cement to isg-length

else
return mbx full error

If insert-displacement remove-displacement
if msg-length .. (remove-displacement -

insert-displacement)
move message to (buffer + insert-displacement)
add msg length to insert-displacement
add msg-length to current-bytes

else
return mbx full error

If insert-displacement - remove-displacement
and current-bytes not - zero
',:turn mbx full error

B Getting 4 Message

If current bytec not - zero
if remove-displacement not equal high-water mAik

move msg (buffer * remove-displacement) to
Saller s buffer

,vAd msg lenpth to remove displacementV elsp'
moV mosage "buffer * t to ciller s buffer

v r,, Tm '7Er. 1ispiac'enro t, mg length
-ot high w-iter mark to, inrert displacemert

r 1t 1rr, r ' - ' t I4t f: fl40 error

1 M ,

DS 620143300

1 November 1985

rd - remove displacement, id - insert displacement

rd id

Figure 1. Simple case, no wraparound

15 1

__ __ __ __ __ I __ I

rd id

Figure 2. Mailbox full

15 1

rd id

Figure 3. Condition for buffer wraparound on send

Id rd

Figure 4. Mailbox full (due to fragmentation)

5 1 i s II

id rd

Figure 5. Condition for buffer wraparound on read

A-3

L M*.-~-.

DS 6201433500
1 November 1985

APPENDIX B

MODULE STRUCTURE CHART

1----------------- --------
+--- I ATTACK STUB 1--GETMAIN-- I TWA I

I ------------------ --------

LINK

I2 -----------------
--'I COBOL PGM: I

I COMM, NTM, I
I QP, or I
I PSEUDO-AP 1

3 +-------------------

+----I OSIBM I

4--

I4 +---------- 5 +---------- 6 +--------- 7 --------- 8 ---------
I IIPC I I PRC I IHC I I CON I I CICS I

ILINK' LINK* LINK* LINK* LINK* LINK*

II~~ I 9--------
-------------------------- ------------- ---------- I 3270I

IEMUl

10+----------- 11+----------- 12+----------+
I ETXR I iERRPRO i I IHCEXT

+---- 4-------- ----------- -----------

B-1

DS 620143300
1 November 1985

13 -- - 14 - -- 15 -- + 16 --- 17 -- +
ICOMMON I IVTAM CBt iVTAM CBI VTAM CBI IVTAM SLUi
ITABLE I IVAX I IHL6 I ICON I ITABLE I

--------- +--------- --------- --------- ----------+

These LINKS are to be replaced with direct branches.

MODULES:

1. The ATTACH STUB which GETMAINs and initializes the TWA

2. The COBOL program, such as COMMO or COMMO2. the NTM
Monitor, the NTM MPUs, the Query Processors, or the
Pseudo-APs

3. OSIIBM. which records the type of call and links to the
appropriate interface routine (IPC, PRC, IHC, etc.)

4. IPC, the Inter-Process Primitives interface program

5. PRC, the Process Control Primitives interface program

6. IHC, the Inter-Host Primitives interface program

7. CON, the Console Primitives interface program

8. The CICS Interface, which allows the Pseudo-AP to talk to
CICS

9. The 3270 Emulator, which emulates a local 3270 through VTAM

10. ETXR. the End-of-Task exit

11. ERRPRO, which can be linked to by the COBOL program or by
any interface program, and formats and sends error messages

12. IHCEXT, the VTAM error exits for IHC

13. The COMMON TABLE, a load module which containr data required
to run the IISS Test Bed on IBM

14, 15, 16. VTAM control block load modules for the VAX. thf,

Honeywell Level 6. and the NTM console

17. The VTAM SLU table, which contains multiple sets of VTAM

DS 620143300

1 November 1985

control blocks to use to emulate 3270s into CICS

NOTES:

1. The ATTACH STUB is the first module to get control when a

task is created

2. The ATTACH STUB LINKs to the COBOL program

3. CALL statements issued by the COBOL program are resolved by
entry points in OSIIBM

4. OSIIBM LINKs to the appropriate interface routine to perform
the requested function

5. The interface programs use data and control blocks contained
in other load modules such as the Common Table, which are
LOADed at system utilization

B-3

DS 620143500
1 November 1985

PROCESSING FLOW

ATTACH STUB (RI - CRTPRC paralist)
-- TWA
I GEThAIN TWA I ----)+--------------------------
i establish RSA (in TWA) I RSA for ATTACH STUB
store A(TWA) in TWA I I RSA for OSIIBM
LOAD COMMON TABLE I RSAs for IPC,PRC,IHC.

I store A(COMON TABLE) in TWA I I etc.
+--I LINK to COBOL program -- + A(TWA)

I RETURN (task ends) A(OOMMON TABLE)
S--------------------------------- I I type of primitive call
LINK I i A(parmlist) for
I COBOL pgm (RI - CRTPAC parmlist) I i for primitive

------------------------------------ I ERRPRO parmlist and
i parms

I +-----------------------------

" -.- --- ' CALL SNDMSG' USING MBX-NAME -

BUFFERS I1 COMMON TABLE
I NUN-BYTES 1+-+-------------------------

.m STATUS. I I
I i MAILBOX TABLE

--------------------- + TASKLIST TABLE
OSIIBM (linked with COBOL pgm) i

a, I +------------------------------------

ENTRY SNDMSG
search thru RSAs to find TWA
set type of call in TWA
store A(SNDMSG parms) in TWA
LINK to IPC program
RETURN to COBOL pgm

---------------------- ------

LINK

.1_ IPC (Ri - A(TWA))

Load A(TWA)
ettablish IPC RSA in TWA
load A(COMMON TABLLI from TWA
a ca11 to bend d mesLage

SNDMSG RTN

I oad A(SNDMS(; pLrm,,-) from TWA
Eearrh MAILBOX TABLE
if mailbox not found,

LINK to ERRPRO

RETURN

E4

-o

DS 620143300
1 November 1985

PROCESSING FLOW (Continued)

- - - - - - - - - - - - - - - - - - - -

LINK

I ERRPRO (RI -, ERRPRO paralist (in TWA))
- -------------------------------
I format error message
Isend message t~o mailbox ERRNBX
RETURN

--

B-5

DS 620143300
1 November 1985

SYSTEM INITIALIZATION

MVS INITIALIZATION
+------------------------------------ TWA
I GETMAIN TWA I- +--------------------------
I establish RSA (in TWA) I I RSA for MVS INIT
I store A(TWA) in TWA I I RSA for OSIIBMI
ILOAD COMMON TABLE I--+ 1 RSAs for IPCPRC,IHCI
I store A(COMMON TABLE) in I I I etc.
I TWA I I A(TWA)
I build own TASKLIST TABLE I I A(OOMMON TABLE)I
I entry I I

iLOAD modules in MODULE I -------------------------------

I TABLE Wf save addrs in II
I MODULE TABLE: IPC, PRC. I I COMMON TABLE

IIHO. CON, ERRPRO, CICS I +-+-----------------------------
I Interface,3270 Emulator, I I MODULE LOAD TABLE

IVTAM PLU control blocks, I ITASK ATTACH TABLE I

I VTAM SLU control block I IPROGRAM LINK TABLE
I table I

iATTACH tasks in ATTACH I I MAILBOX TABLEI
iTABLE using the CRTPRC I I TASKLIST TABLEI

I primitive: ERROR LOG i- +------------------------------
WRITE task I

k-iLINK to programs in LINK I I
ITABLE (e.g., the NT?! I I

I Monitor AP) I I ATTACH STUB
I RETURN (region terminates)I + -----------------------------
+------------------------------------ I GETMAIN TWA. etc.
I OSIIBM I I LINK to ERROR LOG
--------------------------- +--I1 WRITE

I +----------------------------

LINK

LINK I ERROR LOG WRITE task
+------------ -----------------------------

I CALL 'CRTMBX' USING 1
ERRMBX' I
SIZE ... I

NT?! Monitor AP CR1 -, CRTPRC parms) i CALL 'WAIT0l' USING I

-------------------------------- MBX ...

+--CALL 'CRTPRC' USING MON-MPU i +----------------------------
PRIORITY1 I OSIIBM I
STATUS. I ------------------

B-6

DS 620143300
1 November 1985

- - - - - - - - - - - - - - - - -

I IOSIIBM(linked with COBOL pgmi

+--2IENTRY CRTPRCI
search thru RSAs to find TWAI
Iset type of call in TWA I
store A(CRTPRC parms) in TWAI

+- LINK to PRC program
I IRETURN to COBOL pgm
I -------------------------------------

LINK

PRC (RI - A(TWA))

load A(TWA)I
establish PRC RSA in TWA I
load A(ONMMON TABLE)frou TWAI
a& call to create a process? I

ICRTPRC RTN:I
load A(parmlist) from TWA I

I search TASKLIST TABLE
lif no duplicate,
Ibuild TASKLIST TABLE entry. I
IATTACH task 1-

I RETURN II
+------------------------------------ I

I ATTACH STUB
- - - --- - - - - - - - - - - - - -

IGETMAIN TWA, etc.
+--I LINK to MONITOR MPU
I +----------------------------

LINK

I MONITOR KPU task

ICALL 'CRTMBX' USING
NAME,
etc.

B-7

DS 620143300
1 November 1985

I CALL 'CRTPRC' USING i
cOMMPU, I

I etc. I

+----------------------------

I OSIIBM I
+----------------------------

NOTES:

The job step task (the program specified in the EXEC statement in
the JCL) is the MVS Initialization program (OSIMVSI). It GETMAINS a
TWA for the task, LOADs the COMMON TABLE, and then searches the
MODULE LOAD TABLE, the TASK ATTACH TABLE, and the PROGRAM LINK TABLE
(which are tables within the COMMON TABLE load module) to determine
what modules to load and tasks to attach to prepare the region for
execution.

The last (or only) program, the initializ&tion program, links to is
the NTM Monitor AP.

The NTH Monitor AP creates the Monitor MPU task and then sends it
messages for it to start the MPUs required, such as the COMM MPU and
the QP and PIOS MPUs.

The Monitor AP also sends messages to the COMM MPU for it to start
the COMMs for the VAX and the Honeywell Level 6.

At this point the system is initialized and is ready for message
traffic.

B8

.........&AW......................

DS 820143300
1 November 1985

SUBTASK HIERARCHY

NTM
IMONITOR
lAP

+---------------------------------

+------------ 4------------

I ERROR I I NTM MPU I
ILOG I for I

i WRITE iMONITORI

-- 4

4.------------ --------------- +------------

I NTM MPU I INTM MPU I I NTM MPU
I for I I for I for
I COMM I I QPs IPIOS

+------------ +-------------- -------------

+------------ 4-------------- 4-------------

I I I 4------------------ I .------------

4---------.------------- +------------ QP n +-------------- pIs
ICOMMI iCONM2 i QP I 1 PIOS I PSEUDO
Ifor 11 for i iI i i PSEUDO iAP n

I VAX ii 1116 i i i---------- P1 ---------+1A

4---------.------------- ------------- --------------

The highest level task is the M~ Monitor AP. It receives
control from the NVS initialization program (via a LINK) after
the initialization program has started the Error Log Write
subtask.

The WTH Monitor AP starts the Monitor MPU subtask. and the
Monitor MPU starts the COMM HPU. THE 9? MPU and the PIOS MPU

The OHN MPU starts COIIHI for communication with the VAX. and

B-9

DS 620143300
1 November 1985

COMM2 for communication with the Honeywell Level 6.

The QP MPU starts one or more QPs (Query Processors), and the
PIOS MPU starts one or more PIOS Pseudo-APs.

All the tasks mentioned above run all day until told to
terminate, except the QPs and PIOS Pseudo-APs. These tasks are
transactions initiated by input from a terminal operator and are
repeatedly started and ended all day.

a

B 10

ML Mr ,

-b*~

DS 620143300
1 November 1985

APPENDIX C

VTAM LOGIC FOR IHC

The following document describes the logic and the VTAM
macros used by the OSIIHC module (IHC). IHC will communicate
with a 3270 terminal (or host emulating a 3270 type terminal)
using a half duplex flip flop (HDFF) protocol. This was chosen
over a half duplex contention protocol because its use is more
prevalent with 3270 terminals. Also, there is no mechanism for
communicating contention situations to the calling program (COM)
since they are not apparent at the time the SEND is issued. In
HDFF protocol one logical unit (LU) is in send mode, and the
other is in receive mode. Their respective states are switched
when the sender sends a message with a change direction
indicator.

1. Initialize Logic

A. Verify that the correct number of parameters were
passed and that the event block has been
initialized to zeros.

B. Save the address of all control blocks in the TWA
and move the terminal id into the TWA.

C If the TWA contains a nonzero pointer to the VTAM
control block module (this indicates the port has
already been initialized)

1. Issue a CLSDST for the session.

2 Close the ACB.

3 Reset the VTAM control flags to their initial

state.

4 Delete the IHCEXT module.

5 Go to step D.

Load the VTAM control block module that is
associated with the port we are initializing
and save its address in the TWA.

C-I

D6 62014330OO
1 November 1965

D. Load the exit routine nodule (INCEXT) which will
handle error responses ad aboorm&) COnditIUMIL
such as TPEND and LOSTERM Fill in the LCS exit
list with the addresses of the exit routines that
are contained in IN1CUT

E. Obtain storage to be used as send and receiv*
buffers

F. Establish a session witk, the remote station (-r Yr,

VTAM terminology secondary logi,..ii unit 'SLU

I Open the ACB

2 Issue a SETLWOON

3. Issue an OPUDST with OPTCIbmAC;UlRL

4. Move the CID (session ident~fier, t 4, RI

5. Set a flag indicating the Lession it ina
between bracket btdte

2. Send Logic

A. Verify paraaeterE and 6ave the~ Addret-te A 'ho
EVTBLX and XMTBLX

B. Verify that a receive .i, ne-1 out' tan'1ins

C. Move the data from the XMTILX te, the bend buff.'r
inserting the 3270J control -hira' t#-r. t' eyraPLO trio
buffer and leave *.he keyboard io'.ko'd

D. If between brakAt flAg i& on

1. isrue a bid Let -i timer snd wdiit f,'i i
definite -esponLFP If the timur expirvi.
before a responhe i! received wv exit wit?,
wait timeout err,) a Whenvve.r IMC mu!A w-t.'

for a reponse from the SLI] 4 timer IL bil A-1
a wait timeout error Smly o)''eUT Mowever ri.
timer iL set when IHC waits f,,r VTAM to
schedule an event)If thC SLU IL in tran~n. .
mode. it wilt give a negative re-bponLe and we,
will exit with a message indicating a bid

C ~ ~~ ~~~~ -e'6 t

D6 620143300
I November 1965

fai lure

2 Issue a SID containing the data to be
transmitted This SKID viii have a begin
bracket. no Md braoket, Ad no ohauge
direction indicators set,

3 Turn off the flag indicating the session is
between brackets

else

I If chage direction flag (VTAOCDIR) is on and
the remote accepts data flow control requests

a Issue a session control (SKSSIONC) macro
with a CLEAR option

b Issue a SESSIONC macro with a START DATA

TRArTIC option

c Wait for a response.

2 Issue SEND a with no begin bracket, no end
bracket. no change direction ad exception
responses only This send will contain the
data to be transmitted

3 Wait for the SEND to be scheduled.

E Issue a SEND to erase 3270 buffer, unlock the
keyboard and set the change direction indicator

F Turn on the change direction flag

G Set successful return code and exit.

3 Receive Logic

A Validate parameters and prime the EVTBILK and other
areas

B Ensure that the receive outstanding' flag is not
set and that the event number Is not zero.

C If the return receive flag is set.

C-3

DS 620143300
1 November 1985

1 Discard the data.

2. Issue a SEND with erase write, change
direction, and keyboard unlock.

D. Issue an asynchronous receive, specifying that the
ECB in the EVTRBLK is to be posted upon
completion

E. Set 'receive outstanding' and event type-'receive
in the EVTBLK Move the event number from the
parameter list to the EVTBLK.

F. Set successful return code and exit.

G. If definite response is requested by the SLU. send
the appropriate positive response.

H. Set successful return code and exit.

4 Get Logic

A. Validate parameters.

B. Check to see that the ECB has been posted and that
the event type is receive'.

C Move the data from the buffer to the RCVBLK
stripping off the 3270 control characters

D. Set the length field in the RCVBLK and reset the
flag indicating event outstanding.

E. If the change direction flag is on, reset the
change direction indicator (We are now the
sender)

F Reset the ECB and RKI, used for the receive.

G If definite response is requested by the SLU. send
the appropriatc positive response

H Set successful return code and exit

5 Cancel Logi(

A. Validate parameterL.

(-4

DS 620143300
1 November 1985

B. Insure that either a 'receive' or 'returned
receive' is outstanding.

C. Issue a RESETSR. canceling all synchronous data
flows.

D. Wait for the RESETSR to be completed.

E. Reset the receive RPL so that it may be reused.

F. If this terminal accepts data flow control

requests:

1. Issue a SESSIONG with a CLEAR option.

2. Issue a SESSIONC with a START DATA TRAFFIC
option.

3. Set the flag indicating we are between
brackets.

G. Turn off the change direction flag.

H. Set successful return code and exit.

6. Terminate Logic

A. Verify parameters.

B. Zero control blocks.

C. Issue a CLSDST to end the session.

D. Close the ACB

E. Delete the VTAM control block module and exit
routine module.

F. Set successful return code and exit.

7. Response Exit

A. If response is negative

1. Format an error message and call ERRPRO to
record the error.

C-5

JN--

DS 620143300
1 November 1965

2. Issue a SESSIONC with a CLEAR option to
reinitialize the session.

3. If the SLU accepts data flow control requests.
Issue a SESSIONC with & START DATA TRAFFIC
option. Wait for the response.

4. Turn on the between bracket flag

5. Return to VTAM.

B. If the response is positive (this should not
happen)

1. Format an error message and call ERRPRO to
record it

2. Return to VTAH.

8. TPEND Exit Routine

(VTAH has been terminated or our APPLID has been
inactivated.)

A. Format an error message and call ERRPRO to tecord
it

b. Set the flag indicating TPEND. After this flag has
been set, all calls to IHC except TRLAN and
INILAN will be rejected with an error indicating
'tpend'.

9. Losterm exit routine (line failure, buffer
overflow. etc.)

A. Format an error message and call ERRPRO to record
it.

B Set the flag indicating IOSTTERi After this flag
has been set. all calls to IHC except TRMLAN and
INILAN will be rejected.

C. Return to VTAM

10. Defining parameters associated with the SLU (remote
port)

C-6

* - *~**~ ~- *.~ * q%

DS 620143300
1 November 1965

Zach SLU (host or terminal) willilive a load module
associated with It that will contain &ll the WYAN
control blocks necessary to establish and maintain
communications. This module will have the same nam"6
the port Id. It is created by the 'VTA863L1' macro.
For each remote port. one of those macros must be
coded. assembled and link edited as re-entrant. The
format of the macro Is shown below.

VTAN3UCS APPLID-IXX.T1.MID-YYT.VTRESID-ZZZZ.
VAITaWKWUN

where
APPLID is the name of the VTAM applid This
applid must be authorized to acquire terminals. A
separate applid must be defined ina VTAN for each
remote port

TRMItJ Is the port name that Is passed by CON to
the INC program

VTRILSID is the V7AM resource Id associated with
the port (i.e.. the label on the LU macro that
defines this device.)

VAITV is the maximum time (in macro seconds) that
the INC program will wait for a response from the
SLU The default value Is 10.000 or 10 seconds
It should be noted that this timeout value only
applies to waiting for replies from the SLU Wheni
it is necessary to wait for VTAN to schedule axa
event, there Is no timeout.

Additionally. TFFLAG- 'hex value may be specified. This
option Is used to specify terminal characteristics
Currently, the only terminal characteristics defined are
whether or not the 'termnll supports data flow control
RU's and other characteristics of a terminal with a FM
profile of 3 and a TS profile of 3. If this bit is off.
the SLU is treated as a local. non-SNA 3270 The default
value (on) is correct for remote 3274 and 3276 SNA
terminals. If support for additional terminals is
desired, this field may be expanded.

C-7

